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The paper is concerned with modelling the dynamic behaviour of a structure with
damping. Hysteretic damping is commonly accepted to be reasonably accurate in some
circumstances, but can only be applied directly in the frequency domain. Dynamic (time)
behaviour, however, is most conveniently predicted by a viscous model. A dampingmatrix is
constructed for use in the viscous equation which gives a dissipation of energy
approximating to the hysteretic model. The approximation is justi"ed by comparing results
in the frequency and time domains and against measured data from a loudspeaker
diaphragm. The ability of the matrix to re#ect di!erent damping in various components of
the structure is considered, together with predicted natural frequencies and modes.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

1.1. BACKGROUND

Material damping, the loss of energy occurring through motion in a structure, comes from
many causes even when only a single material is involved, and its accurate mathematical
representation is di$cult [1}3].
If the damping in a system has its origin in linear viscoelastic e!ects within the material

(as opposed to locally non-linear e!ects associated with structural junctions) then the e!ects
can be exactly characterized via complex moduli. This follows from the &&viscoelastic
principle'' see references [4, 5]. The complex moduli are de"ned in the frequency domain,
and because of the well-known causality problem [6], they cannot be constant. However, as
an empirical fact of observation, for moderate audio frequencies these moduli often turn out
to be rather slowly varying in frequency, so that the &&hysteretic model'' is often used as
a convenient approximation (provided it is used with care).
The origin of the hysteretic assumption does not come from matching the forms of

transfer functions, but from measuring modal damping factors and observing the
constant-Q behaviour. This means that the most natural thing to match, if trying to
approximate the behaviour within a viscous model, is not so much particular values of the
transfer function as the complex poles and residues of the transfer function. For the simplest
case in which the mass matrix of a system is a multiple of the unit matrix, one way to achieve
constant-Q-behaviour is by using a damping matrix which is the symmetric square root of
the sti!ness matrix. This fact, although not emphasized, appears in the famous paper by
Caughey [7]. However, this is unlikely to be helpful for complicated structures.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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If damping is small, then modal damping factors can be calculated by post-processing
elastic modes and frequencies, using Rayleigh's principle. This approach can allow for
spatial variations, and for frequency varying complex moduli [8, 9]. In this paper, a method
for approximating to hysteretic damping is proposed which does not, in itself, require
damping to be small, although its accuracy may decline as damping grows. An example is
treated in detail which uses a relatively large loss factor. The outcome is mainly considered
qualitatively, as a general theory for accuracy has not been developed.
The situation addressed here is of a structure made up of di!erent materials and for which

the hysteretic model is considered acceptable with damping information available in the
form of material loss factors. The interest is in the transient response of the structure to
a time excitation which is not periodic. The problem can be solved in the frequency domain
and the solution be transferred to the time domain according to the correspondence
principle [5]. However, there is the theoretical di$culty with causality and in practice the
use of the inverse fast Fourier transform calls for considerable care to be accurate, see
reference [10, chapter 12]. It is more straightforward to work directly in the time domain,
and there is an established method, see reference [11, chapter 8], which solves the equations
if the damping is included through a viscous rather than a hysteretic matrix. Thus, as
a mathematical convenience, it would be helpful to have a method for deriving a viscous
matrix from the matrix of the hysteretic model containing the localized damping
information. This paper describes such a method.

1.1.1. A statement of the problem to be considered

It is assumed that

MuK (t)#(K#iH)u (t)"g (t), (1)

provides an acceptable model in the frequency domain, where u(t) contains the N structure
degrees of freedom, and M and K are the standard mass and sti!ness matrices (formed by
the "nite element method in our case). Damping is incorporated through modifying the
modulus of elasticity, E, by adding a term with a �/2 phase shift,

E (1#i�), i"�!1.

The (assumed) constant � is called the damping loss factor and physically measures the
proportion of energy lost in a cycle. Thus for a structure made from a single material
damping enters the equation of motion through the term

K(1#i�)u (t).

If a structure is made up of several di!erent materials the form becomes

K(1#iH)u(t),

where the matrix H re#ects the distribution of the damping.
To obtain a time response it is convenient to work with the viscous damping model

MuK (t)#Cu� (t)#Ku(t)"g (t). (2)
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For the type of problem considered here there is no clear indication of how to form C. For
Rayleigh (proportional) damping, C"�M#�K. The mathematics is simpli"ed, but in
general there will not be suitable parameters �, � to represent a structure. The concern of
this paper is to devise a suitable C to approximate to hysteretic damping, equation (1).
Approximating one form by the other has been addressed for a one-degree-of-freedom
system in reference [3]. Here the subject is revisited and extended to a general structure.

2. CONSTRUCTING AN EQUIVALENT VISCOUS DAMPING MATRIX

2.1. ONE DEGREE OF FREEDOM

A one-degree-of-freedom system is initially examined in order to establish a method that
can then be extended to the ("nite element) model of a more general structure. Consider the
hysteretic damping model which is to be transformed to the frequency domain,

muK (t)#k (1#i�)u (t)"g(t), (3)

wherem is the mass, k the sti!ness, � the loss factor or hysteretic damping factor and g is the
forcing function. For sinusoidal forcing,

g (t)"gei��, u (t)"u
�
ei�� (4)

and factoring out the time term,

!m(�)�u
�
#k (1#i�)u

�
"g. (5)

Introducing the natural frequency of the undamped system

�
�
"�

k

m
,

equation (5) becomes

(!��#i���
�
#��

�
)u

�
"

g

m
. (6)

The corresponding viscous damping model is

muK (t)#cuR (t)#ku(t)"g (t), (7)

where c is the damping coe$cient. The sinusoidal response is similarly given by

�!��#i
c

m
�#��

��u�"
g

m
. (8)

Clearly, as � varies, the two equations (6) and (8) cannot give the same values to the two
frequency domain solutions u

�
and u

�
. Suppose the roots of the homogeneous forms of the

equations (which correspond to the poles of the transfer function) are compared. They are
for the viscous and hysteretic models, in the "rst quadrant of the complex plane,

z
�
"�

�
(1#i�)��� and z

�
"���

�
!�

c

2m�
�
#i

c

2m
.
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Ideally, c would be chosen so that these are the same point as � varies, but simple
manipulation shows that this is not possible. The best that can be achieved is that a measure
of the distance between them is minimized. Consider an obvious choice for the measure

d

dc
�z

�
!z

�
��"0,

d

dc ���
(1#i�)���!���

�
!�

c

2m�
�
!i

c

2m �
�
"0.

Setting �"arctan(�)

d

dc���
�
(1#i�)��� cos�

�
2�!���

�
!�

c

2m�
�

�
�
#���

(1#i�)��� sin�
�
2�!�

c

2m��
�

�"0.

This leads eventually to

c"2m�
�
sin�

(arctan �)
2 � (9)

or, if ��1 c+m�
�
�. (10)

Neither of these values for c, equations (9) and (10) will give exact correspondence over
a frequency range, but rather an approximation according to the chosen criterion.
Figure 1 shows how sin[(arctan �)/2] and � di!er; there is very close agreement up to
�"0)4 and it remains good up to about �"1.
Figure 1. To compare a near-optimal choice for c/(m�
�
), i.e., � shown by (�), with an optimal solution for

c/(m�
�
), i.e., 2sin[(arctan�)/2], shown by (**).
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If approximation (10) is substituted into equation (8) and the result compared with
equation (6), the choice for c can be interpreted as that which makes the two equations
identical when � is at the modal frequency �

�
. This way of choosing c carries over

straightforwardly from a single equation to a system representing a complex structure, and
has been used for the work of the paper. A further justi"cation is that, as shown later, it does
seem to work reasonably well. The alternative (and there must be others) of equation (9)
appears not to be so easy to apply to a general structure and has not been explored by the
author.
Note for later reference: an estimate needs to be made of a modal loss factor in section 4.2

where the modal decay rates and frequencies are available. To do this, equation (10) may be
rearranged,

�"

c

m

1

�
�

"2�
c

2m��
1

�
�
�"2

decay rate

natural frequency
. (11)

So the right-hand side of equation (11) may be used for an estimate, which may then be
compared with material loss factors.
Adopting the choice for c given in equation (10), the two damping models are now

compared. For hysteretic, the damped natural frequency, �
�
, is given by
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The corresponding viscous damping model has a natural frequency given by
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Figure 2. To show the in#uence of the loss factor on the decay rates and normalized frequency of the hysteretic
(*) and equivalent viscous (�) damping models, for a single-degree-of-freedom system.
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A comparison of the normalized frequency and decay rates from the two models is shown in
Figure 2.
Notes on the comparison between the models

� For small � the two models are similar: for example if �(0)5, the two normalized
frequency and decay rates di!er by less than 6 and 3%, respectively, of the hysteretic
value.

� Since 

�
'


�
, a slightly higher decay rate is predicted by the viscous damping model, and

the di!erence increases with increasing �.
� Since 	

�
(1(	

�
, the viscous model indicates that the e!ect of damping is to reduce

natural frequency and the hysteretic to raise it. The former corresponds to the generally
expected behaviour, rather than the latter [3].

� For the equivalent viscous equation critical damping occurs when �"2.
� The acausal nature of the hysteretic scheme, see reference [3, 6], means that the two

damping models can never be made identical. The poles can only be matched
approximately, and not uniquely as there are di!erent ways of quantifying the di!erence
between the poles. The approach adopted can be understood as making the two
equations the same at the natural frequency. The decay rate predicted by the equivalent
viscous model is higher and becomes progressively more so as � increases.

2.2. MODELLING A GENERAL STRUCTURE

Consider the general case: in the frequency domain the two equations (2), (1) are

[!M��#i�C#K]u
�
"g (12)
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and

[!M��#iH#K]u
�
"g, (13)

where u
�
, u

�
are the frequency domain displacement vectors derived from the viscous and

hysteretic damping models and g is a vector giving the spatial distribution of the force.
Suppose that X, D form the eigensystem of M and K so that

KX"MXD,

where the columns of X are the eigenvectors (modes) and the diagonal matrix D contains
the natural frequencies:

D"diag���
�
,��

�
,2,��

�
�.

Applying the eigenmatrices to partially uncouple equation (13) gives

MX[!I(�)�#i (MX)��HX#D](X��u
�
)"g

or [!I(�)�#iB��HX#D]w
�
"k, (14)

where

B"MX, w
�
"X��u

�
, k"B��g.

The corresponding equation for viscous damping, equation (12), is

[!I��#i�B��CX#D]w
�
"k. (15)

Consider "rst the simple case where H"�K and system (14) uncouples to

[!I��#i�D#D]w
�
"k. (16)

The set of equations (15) cannot be made the same as equation (16) for all � but it is possible
to make pairs of corresponding equations to be the same at one frequency (di!erent for each
pair). So following the method used in the previous section, 2.1, which was derived from
approximately matching poles, we choose to equate the pairs at the corresponding natural
frequency, i.e., where � takes the sequence of values

��
�
,�

�
,2,�

�
�.

This set of values is the diagonal of the matrix D���.
Thus, we choose C so that

D���B��CX"�D

or C"�MXD���X��.

More generally when H will not allow uncoupling, i.e., is not a linear combination of M and
K, it is still possible to make the corresponding pairs of equations (15) and (16) the same at
the natural frequencies. Here, and in the previous simpler case, it does not mean that the
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solution is exact at the natural frequencies, only that the individual rows of the
corresponding matrices are the same at these particular frequencies.
If the matrix B��HX is not diagonal and the system is still coupled, row j is

[!��#��
�
](w

�
)
�
#i

�
�
�	�

(B��HX)
��
(w

�
)
�
"k

�
, j"1, 2

2
N.

Similarly, the viscous frequency domain displacement can be expressed for row j as

[!��#��
�
](w

�
)
�
#i�

�
�
�	�

(B��CX)
��
(w

�
)
�
"k

�
, j"1, 22N. (17)

Setting �
�
for � in the summation term and combining the row equations (17) gives

[!I��#iD���B��CX#D]w
�
"k.

Thus, we choose C so that

D���B��CX"B��HX,

C"BD����B��H (18)

alternatively, C"X�
D����X
H, (19)

the last expression following from diagonalizing M by X, i.e.,

X
MX"diag�m
�
m

�2�"D
	
say,

so that BD����B��H"X�
D
	
D����D��

	
X
H"X�
D����X
H.

3. SOLUTION IN THE TIME DOMAIN

Having obtained a matrix C which approximates to hysteretic damping we now consider
producing the time solution of equation (2)

MuK (t)#Cu� (t)#Ku(t)"g(t).

3.1. A NOTE ON THE LAPLACE METHOD

For a general driving function g a numerical time-stepping procedure such as the
Newmark-betamethod is necessary. A general discussion of step by step methods is given in
reference [12]. However, if g can be expressed in terms of elementary functions, then the
Laplace method will provide an analytic time solution thus avoiding any concern with
stability or numerical errors beyond those due to rounding. Details are given in [11,
chapter 8]. The types of driving function used in the examples are an impulse, a raised
cosine form of impulse (at frequency �

�
/(2�)) and a tone burst of n cycles; they all are
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suitable for the Laplace transform;

	 (t),

(1!cos(�
�
t))�H(t)!H�t!

2�
�

�
��,

sin(�
�
t)�H(t)!H�t!

2�n
�

�
��,

where H(t!) is the unit step function

H(t!)"�
0, t(,
1, t'.

3.2. A NOTE ON COMPUTING ENERGY

Information on the #ow of energy in a structure is also available and as it will be used
later, an outline of the computation is given here.
Multiply equation (2) by u� 
(t)

u� 
(t)MuK (t)#u� 
(t)Cu� (t)#u� 
(t)Ku(t)"u� 
 (t)g (t),

and integrate on [0, t] to give

�
�
u� 
 (t)Mu� (t)#	

�

�

u� 
 ()Cu� () d#�
�
u
 (t)Ku (t)"	

�

�

u� 
 ()g () d.

The "rst term is the structural kinetic energy and the third is the potential (strain) energy.
The second term is the energy dissipated due to damping and the right-hand side of the
equation is the work done by the external force.
It follows from the construction of the "nite element global matrices

M"



�
�	�

M� and K"



�
�	�

K�,

where E is the number of elements forming the structure, that energy information can also
be obtained at the element level.
The eigenvalues and eigenvectors from which the solution is constructed are complex.

However, the original equation (2) is real and the initial conditions are real, so the solution
must be real. In forming the solution the imaginary parts of the complex numbers should
cancel, but numerical computation will, most probably, introduce small errors which will
result in the solution having a small imaginary part, which may be ignored.

3.3. NOTE ON THE STRUCTURE OF THE EIGENSYSTEM AND THE SOLUTION OF THE

HOMOGENEOUS EQUATION

It is shown in reference [11] that the eigenvalues of the general viscous equation (2) occur
as complex conjugate pairs, say, �

�
"�

�
#i�

�
and �*

�
"�

�
!i�

�
and that the corresponding
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eigenvectors (modes) will also be complex conjugates. Hence, they have the pattern

x
�
"a

�
#ib

�
and x*

�
"a

�
!ib

�
.

Consider the kth component of an eigenvector in polar form,

a
��

#ib
��

"r
��
ei���, k"12N,

where

r
��

"�a�
��

#b�
��
, �

��
"arctan�

b
��
a
��
�.

The component of the mode corresponding to the complex conjugate eigenvalue is

a
��

!ib
��

"r
��
e�i���.

Thus, the kth components of

e���x
�

and e�*�� x*
�

(20)

are e����i	���r
��
ei��� and e����i	���r

��
e�i���,

or e���r
��
ei�	������� and e��r

��
e�i�	�������.

The pair of complex of functions given in equation (20) are solutions of the homogeneous
form of equation (2)

MuK (t)#Cu� (t)#Ku(t)"0. (21)

They, for j"12N, form a basis for the solution space and have the convenient form of
separating the time and space variation. The space component can be viewed as a mode
shape which in this case is complex. The physical meaning of complex mode shapes is
discussed in references [13}15].
An alternative basis may be formed by recombining functions (20) into real functions. The

real and imaginary parts of either of the pair may be used (alternatively the real and
imaginary parts may be formed by a linear combination). It seems to be more meaningful
when working in the time domain with real equations and real solutions to use these real
basis functions,

e���r
��
cos(�

�
t#�

��
) (22)

and e���r
��
sin(�

�
t#�

��
), j"12N. (23)

The shape of mode j, r
�
, made from the components r

��
is modi"ed through time by the

decay term e��� and the sinusoidal term with the natural frequency �
�
, rad/s, and a phase shift

�
��
for the component r

��
. An illustration is given later in Figure 5.

4. INFORMATION FROM THE MODEL

Here some predictions arising from using equation (2) with the approximating damping
matrix C are examined. The need for such a matrix arose from work being carried out by



Figure 3. Finite element model of an axisymmetric loudspeaker diaphragm, coil and former.
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a loudspeaker company on modelling the transient response of a diaphragm; the main
concern in this paper is with the mathematics of the damping. A report on the acoustic
justi"cation and implications form a conference paper [16], to which an interested reader is
referred. A slight overlap with that paper was necessary in order to verify the method
against measured data, and Figures 10 and 11 are common.

4.1. THE STRUCTURE USED TO ILLUSTRATE THE METHOD

The structure used is a commercial loudspeaker cone shown in Figure 3. Values of the
material properties used for the modelling were estimated and are given in Table 1.

4.2. VARIED DAMPING AND THE EIGENSYSTEM

Figure 4 shows the spread of natural frequencies and corresponding estimated modal
loss factors using the material properties given in Table 1. The modal decay rates are
available from the computation, but the corresponding modal loss factor is used for
the y-axes in order to relate better with the loss factor assigned to the di!erent materials of
the structure. The modal loss factor is calculated using a relation (11) corresponding to
a single-degree-of-freedom system,

modal loss factor"2
decay rate

modal frequency
.

The modal loss factors shown in Figure 4 fall broadly into two groups, re#ecting the
surround value, 0)4, and that the cone, 0)07. Three modes at frequencies close to each other
are chosen to illustrate di!erent forms of behaviour, (a) at 3835 Hz, (b) at 3859 Hz and (c) at



TABLE 1

Material properties of the loudspeaker diaphragm, coil and former

E Density Thickness
Component Material (MPa) (kg/m�) Loss factor (mm)

Coil 72 800 4800 0)008 0)550
Former Kapton 5800 1000 0)003 0)245
Cone Paper 3000 500 0)070 0)750

Surround Rubber 3)5 1200 0)400 0)400

Figure 4. Estimated loss factor and frequencies of modes of the equivalent viscous damping method (�) applied
to the loudspeaker diaphragm with the material properties of Table 1. The undamped natural frequencies are
shown by (*). Three frequencies illustrate di!erent types of behaviour, (a) low loss factor, 3835 Hz, (b) high loss
factor, 3859 Hz, (c) middle value loss factor, 4145 Hz.
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4145 Hz in Figure 4. The correspondingmode shapes, using the same lettering (a), (b) and (c)
as for the frequencies, are shown in Figure 5. Two are at the extremes, near 0)4 and 0)07 and
one has an intermediate loss value. The shapes displayed in Figure 5 are from equation (22)
and are directly available from the computer code (nodes of the voice coil and former are
included, also the node numbering starts at the coil and moves out to the surround). The
low and high loss factors correspond to modes having motion mainly in the cone, (a), or
surround, (b) respectively. The intermediate value, (c), has the motion more evenly
distributed between the two components.

Notes on the damped modes and undamped natural frequencies of Figure 4

� The natural frequencies have been ordered and linked by dotted lines to the
corresponding undamped natural frequencies; these show that mostly there is a decrease
in frequency for the damped compared to undamped, which is as expected from the



Figure 5. Three axial displacement modes (solutions of the homogeneous equation), corresponding to the
(a) high, (b) middle value, and (c) low loss factors at the frequencies identi"ed in Figure 4.
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earlier one-degree-of-freedom analysis. However, in some cases there are very slight
increases which are di$cult to explain, though it is not thought to be signi"cant.

� The signi"cant material loss factors are �"0)4 for the surround and 0)07 for the cone.
The estimated modal loss factors relate to where in the structure the motion of the mode
dominates. If the motion is mainly in the surround then the loss factor is around 0)4, and
if mainly in the cone, around 0)1. This is illustrated in Figure 5. This rather extreme form
of behaviour results from the components being mismatched in terms of their mechanical
impedance.

� Figure 5(a)}(c) also show that the loss factors relate directly with the decay rates.
� The modal loss factors lie between 0)1 and 0)4. No value goes above 0)4 although some

are very close, closer than would be expected seeing that the motion is not located solely
in one component. This may be partly explained by the method of computing the modal
loss factor, see equation (11), the frequencies are under-estimated and the decay rates
over-estimated which was previously noted when discussing Figure 2.

4.3. EVIDENCE ON REPRESENTING THE LOCATION OF DAMPING

The damping matrix C must be able to locate the damping in the material and the
position at which it occurs, so that when a structure is excited the model should only
dissipate energy in that area. It might seem that modal decomposition would make
this di$cult because the same loss factor applies for every point of a mode. However,



Figure 6. Energy movement through a disc with damping applied uniformly: energy is recorded for each
element in (a), and in (b) summed for the inner half-disc (- - - -), outer half-disc () ) ) ) ), and total energy (**).
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Figure 5 shows that motion of a mode can be mainly in one part of a structure, and Figures
6 and 7 show that the energy loss can similarly be localized.
Two numerical tests were carried out on the model of an aluminium disc with radius

60 mm, subjected to the impulsive force of a raised cosine, see section 4, with the frequency
�

�
/2�"10 kHz, acting at the centre. The sti!ness parameter and an unrealistically high

loss factor of 0)4 were used in order to show clearly the di!erent e!ects of damping and no
damping in the inner half disc. The element energy is available in the computer code, as
explained in section 3.2 and can be summed for regions or components of the structure. In
Figure 6, the damping is uniform through the disc and the energy wave can be seen to move
steadily outwards. The energy is input during the "rst 0)1 ms and the dissipation starts
immediately. At around 0)2 ms the wave reaches the outer half disc, 30 mm(

radius(60 mm and energy can be seen to enter the region. The modelling is tested by
removing the damping from the "rst half of the disc but otherwise keeping the material
parameters the same. Figure 7 shows that the wave is then partially re#ected by the
mismatch at the half-way point, and most signi"cantly there is only a very slight energy loss
until this point is reached by the leading edge of the energy wave.

5. EVIDENCE OF THE QUALITY OF THE APPROXIMATION USING THE
LOUDSPEAKER CONE

5.1. FREQUENCY DOMAIN COMPARISON

Both forms, the hysteretic and equivalent viscous approximation, may be applied directly
in the frequency domain; a comparison was made over the range 500}10 kHz for the
acceleration resulting from an impulse. Figure 8 shows the comparison at cross-sections at



Figure 7. Energy movement through a disc with zero damping in the inner half-disc and damping in the outer
part: energy is recorded for each element in (a), and in (b) summed for the inner half-disc (- - - -), outer half-disc () ) ) ) ),
and total energy (**).

Figure 8. Detailed comparison of the normal component of acceleration in the frequency domain, between the
hysteretic, equivalent viscous at the (a) coil/former join, (b) mid-cone, and (c) mid-surround positions. The** and
- - - - lines denote hysteretic values, and the equivalent viscous values respectively. The matched equivalent viscous
values are given by ) ) ) ) lines.
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Figure 9. General comparison of the normal component of acceleration in the frequency domain between (a)
hysteretic damping (the equivalent viscous model is very similar), and (b) the viscous damping model matched at
a single frequency, 5250 Hz.
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the former/cone join (a), mid-cone (b), and mid-surround (c) positions (see Figure 3). The
detailed comparison shows little di!erence at the three chosen points; indeed, the full
frequency plots for the hysteretic and equivalent viscous damping look to be the same and
so both are not shown. In order to explore further a simpler viscous damping matrix was
formed,

C"

1

5250
H.

This attempts to match hysteretic damping at the middle of the range rather than at all the
natural frequencies. Values at the cross-sections is added in Figure 8, showing good
agreement at the matched frequency with di!erences increasing away from it. A comparison
for the whole structure is shown in Figure 9. The matching is good near the middle of the
range and the single-matched damping under-estimates damping below the matching point
and over-estimates above, as would be expected.

5.2. TIME DOMAIN COMPARISON

Since the time and frequency domains are equivalent, having veri"ed the model in the
frequency domain there is no formal need to consider further. However, the exact
equivalence is based on a knowledge through in"nite time and at all frequencies, which we
do not have. In addition, there is some experimental evidence in the time domain from laser
interferometry to compare against.
The hysteretic equation cannot be used directly in the time domain and has to be solved
"rst in the frequency domain and then transformed by using the inverse fast Fourier



Figure 10. Detailed comparison in the time domain between the hysteretic (**), equivalent viscous () ) ) ) ), at
the (a) former/cone join, (b) mid-cone, and (c) mid-surround positions.
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transform. Equation (13) can be solved for �'0 but in order to produce a real function for
the time domain the rest of the frequency values have to be constructed. Suppose the
solution for �'0 is denoted by U�(�). From the general transform theory

U� (!�)"[U�(�)]*,

but equation (13) does not produce this. So U has to be constructed for negative �.

U�(�)"�
[M��#iH#K]��p if �'0,

[K]��p if �"0,

[M��!iH#K]��p if �(0,

where p is the position of the degrees of freedom at which the impulse is applied. Even after
this necessary construction the signal will be acausal through the shape of the function
U� (�). Probably, though this is not serious, see reference [10]. Figures 10 and 11 are the
response of the diaphragm to the same raised cosine pulse used to give the energy plots of
section 4.3. The normal components of the accelerations predicted by the two methods are
very similar and they are compared along the three sections used previously; this is shown in
Figure 10. The greatest di!erence, although slight, is in the surround movement and is
probably due to the higher level of damping.
The equivalent viscous damping method is compared with the laser measurements in

Figure 11. The general features of the measured data are reproduced, su$cient to give



Figure 11. Comparison in the time domain of the normal component of acceleration between (a) the equivalent
viscous damping model and (b) laser measurements.
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con"dence in the method. There are good reasons for the lack of detailed agreement; the
theoretical model does not include the electrical circuit or the stabilizing device (the spider),
and the material parameters are not precisely known.

6. CONCLUSIONS

The dynamic behaviour of a structure has been considered through a viscous damping
model. Hysteretic damping is accepted as a standard and an equivalent viscous damping
matrix C has been constructed, using the undamped eigensystem, which gives
approximately the required frequency independence. The two forms gave good agreement
when compared in the time and frequency domains in modelling a loudspeaker diaphragm.
They were able to predict the main features shown in a response obtained through laser
measurements. Using a circular aluminium plate model and considering energy dissipation
the spatial information was shown to be well preserved in the equivalent model.
Using the developed matrix C the eigensystem was shown to contain information helpful

in understanding motion of the structure. In an example with mis-matched materials
solutions of the homogeneous equation (modes) were shown to have damping loss factors
related to where they have their dominant motion.
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